7 research outputs found

    Noncovalent Interactions in Extended Systems Described by the Effective Fragment Potential Method: Theory and Application to Nucleobase Oligomers

    Get PDF
    The implementation of the effective fragment potential (EFP) method within the Q-CHEM electronic structure package is presented. The EFP method is used to study noncovalent π−π and hydrogen-bonding interactions in DNA strands. Since EFP is a computationally inexpensive alternative to high-level ab initio calculations, it is possible to go beyond the dimers of nucleic acid bases and to investigate the asymptotic behavior of different components of the total interaction energy. The calculations demonstrated that the dispersion energy is a leading component in π-stacked oligomers of all sizes. Exchange-repulsion energy also plays an important role. The contribution of polarization is small in these systems, whereas the magnitude of electrostatics varies. Pairwise fragment interactions (i.e., the sum of dimer binding energies) were found to be a good approximation for the oligomer energy

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    Effective fragment potential method in Q-CHEM: A guide for users and developers

    No full text
    A detailed description of the implementation of the effective fragment potential (EFP) method in the Q-CHEM electronic structure package is presented. The Q-CHEM implementation interfaces EFP with standard quantum mechanical (QM) methods such as Hartree-

    Noncovalent Interactions in Extended Systems Described by the Effective Fragment Potential Method: Theory and Application to Nucleobase Oligomers

    No full text
    The implementation of the effective fragment potential (EFP) method within the Q-CHEM electronic structure package is presented. The EFP method is used to study noncovalent π−π and hydrogen-bonding interactions in DNA strands. Since EFP is a computationally inexpensive alternative to high-level ab initio calculations, it is possible to go beyond the dimers of nucleic acid bases and to investigate the asymptotic behavior of different components of the total interaction energy. The calculations demonstrated that the dispersion energy is a leading component in π-stacked oligomers of all sizes. Exchange-repulsion energy also plays an important role. The contribution of polarization is small in these systems, whereas the magnitude of electrostatics varies. Pairwise fragment interactions (i.e., the sum of dimer binding energies) were found to be a good approximation for the oligomer energy.Reprinted (adapted) with permission from Journal of Physical Chemistry A 114 (2010): 12739, doi:10.1021/jp107557p. Copyright 2010 American Chemical Society.</p

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.This article is from Molecular Physics: An International Journal at the Interface Between Chemistry and Physics 113 (2015): 184, doi:10.1080/00268976.2014.952696.</p

    Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

    No full text
    corecore